Name: \qquad Period: \qquad

$$
\begin{gathered}
\text { Lesson 11-7 (pgs. 603-606) } \\
\text { Three-Dimensional Fiqures }
\end{gathered}
$$

Three-Dimensional Figure:

Figure

Figure

Properties

For each figure, identify the shape of the base(s). Then classify the figure.
a)

base(s): \qquad
figure: \qquad
b)

figure: \qquad
d)

base(s): \qquad
figure: \qquad

Lesson 11-9 (pgs. 613-618) Volume of Prisms

Volume:

Formula for Volume of Rectangular Prism
ex)

ex) Rectangular Prism:
length $=4.5 \mathrm{ft}$, width $=6 \mathrm{ft}$, height $=7.1 \mathrm{ft}$

Lesson 11-9 (pgs. 613-618) Volume of Prisms (continued)

Formula for Volume of Triangular Prism

The base B is a
triangle. So, its area is
found by using $\frac{1}{2} b h$.
ex)

ex) Triangular Prism:
base $=3 \mathrm{~mm}$, height of triangle $=6 \mathrm{~mm}$, height of prism $=5.2 \mathrm{~mm}$

Chapter 11 Supplemental Lesson Volume of Pyramids

Volume of Pyramid:

Formula for Volume of Rectangular Pyramid

ex)

ex) Rectangular Pyramid:
length $=2.6$ in, width $=3$ in, height $=15$ in

Chapter 11 Supplemental Lesson Volume of Pyramids (continued)

Formula for Volume of Triangular Pyramid

ex)

ex) Triangular Pyramid:
base $=13 \mathrm{~mm}$, height of triangle $=9 \mathrm{~mm}$, height of pyramid $=10 \mathrm{~mm}$

Properties

Fine | * Comes to a point |
| :---: |
| * Has a circular base |
| *ylinder |
| Has 2 circular bases |
| that are \cong and $/ /$ |
| *there All pts are equidistant |
| to the center |

For each figure, identify the shape of the bases). Then classify the figure.
a)
bases): $\frac{\text { circles }}{\text { cylinder }}$

Lesson 11-9 (pas. 613-618)
Volume of Prisms
Volume: The measure of space occupied by a 3-Dimensional Figure.

Formula for Volume of Rectangular Prism

$$
V=l w h
$$

*Order doeenot -when multipluaine arad

$$
\begin{aligned}
& V=l w h \\
& V=3 * 9.5 * 5 \\
& V=142.5 \mathrm{~m}^{3}
\end{aligned}
$$

$+\frac{1}{2}$ Formula
$+\frac{1}{2}$ work
+1 Answer 4$)^{3}$
ex) Rectangular Prism:

$$
\begin{array}{ll}
\begin{array}{l}
\text { Rectangular Prism: } \\
\text { length }=4.5 \mathrm{ft} \text { width }=6 \mathrm{ft} \text {, height }=7.1 \mathrm{ft}
\end{array} & V=l w h \\
& V=4.5 * 6 * 7.1 \\
& V=191.7 \mathrm{ft}^{3}
\end{array}
$$

Lesson 11-9 (gs. 613-618)
Volume of Prisms (continued)
Formula for Volume of Triangular Prism

$$
\begin{aligned}
& V=\frac{l w h}{2} \\
& V=\frac{4 * 5 * 7}{2} \\
& V=70 \mathrm{in}^{3}
\end{aligned}
$$

ex) Triangular. Prism:
base $=3 \mathrm{~mm}$, height of triangle $=6 \mathrm{~mm}$, height of prism $=5.2 \mathrm{~mm}$

$$
\begin{aligned}
& V=\frac{l w b}{2} h \\
& V=\frac{3 * 6 * 5.2}{2} \\
& V=46.8 \mathrm{~mm}^{3}
\end{aligned}
$$

Chapter 11 Supplemental Lesson
Volume of Pyramids
Volume of Pyramid: $V=\frac{1}{3} B h$ or $V=\frac{B h^{2}}{3}$

* Mult. by $\frac{1}{3}$ is the same as divide. by 3
$B=$ Area of the base
* Formula for Volume of Rectangular Pyramid $V=\frac{1}{3} l w h$ or $V=\frac{l w h}{3}$
ex)

$$
\begin{aligned}
& V=\frac{l w h}{3} \\
& V=\frac{12 \cdot 12 \cdot 5}{3} \\
& V=240 \mathrm{ft}^{3}
\end{aligned}
$$

ex) Rectangular Pyramid:
length $=2.6 \mathrm{in}$, width $=3 \mathrm{in}$, height $=15 \mathrm{in}$

$$
\begin{aligned}
& V=\frac{l w h}{3} \\
& V=\frac{2.6 \times 3 \times 15}{3} \\
& V=39 \mathrm{in}^{3}
\end{aligned}
$$

Chapter 11 Supplemental Lesson
Volume of Pyramids (continued)
Formula for Volume of Triangular Pyramid

$B=\frac{1}{2} b h \quad V=\frac{1}{6}$ lw or lwh
ex)

$$
\begin{aligned}
& V=\frac{e w h}{6} \\
& V=\frac{8.6 \cdot 5}{6} \\
& V=40 \mathrm{~cm}^{3}
\end{aligned}
$$

ex) Triangular Pyramid:
base $=13 \mathrm{~mm}$, height of triangle $=9 \mathrm{~mm}$, height of pyramid $=10 \mathrm{~mm}$

$$
\begin{aligned}
& V=\frac{l w h}{6} \\
& V=\frac{13 \cdot 9 \cdot 10}{6} \\
& V=195 \mathrm{~mm}^{3}
\end{aligned}
$$

