Name: \qquad
\qquad

Surface Area of Rectangular Prisms
Surface Area:

Formula for Surface Area of a Rectangular Prism

ex)

ex) Rectangular Prism:
length $=10 \mathrm{~cm}$, width $=8 \mathrm{~cm}$, height $=24 \mathrm{~cm}$

Chapter 12 Supplemental Lesson 1

 Surface Area of Rectangular PyramidsSurface Area of a Rectangular Pyramid:

Formula for Surface Area of a Rectangular Pyramid

ex)

ex) Rectangular Pyramid:
length $=3 \mathrm{in}$, width $=3 \mathrm{in}$, slant height $=15$ in

Chapter 12 Supplemental Lesson 2 Cross Sections of Figures

Cross Section:

Cross Section	Slice	Drawing/Description
vertical		
horizontal		

Chapter 12 Supplemental Lesson 2 Cross Sections of Figures (continued)

cross Section	Slice	Drawing/Description
vertical		
horizontal		
angled		

Describe the shape resulting from each cross section.
a)

shape of cross section:
c)

shape of cross section: \qquad
b)

shape of cross section: \qquad
d)

shape of cross section: \qquad

Name: \qquad Key Date: \qquad Period: \qquad
Lesson 12-4 (pgs. 649-653)
Surface Area of Rectangular Prisms
Surface Area: The Sum of all of the Surfaces ob a 3D figure
(Bases \& lateral Faces)

ex) Rectangular Prism:
length $=10 \mathrm{~cm}$, width $=8 \mathrm{~cm}$, height $=24 \mathrm{~cm}$

$$
\begin{gathered}
\text { SA. }=2 B+2 B+2 B \\
\text { SA }=2 \cdot 10 \cdot 24+2 \cdot 8 \cdot 10+2 \cdot 8 \cdot 24 \\
480+160+384 \\
S . A=1024 \cdot \mathrm{~cm}
\end{gathered}
$$

Master key
Chapter 12 Supplemental Lesson 1
Surface Area of Rectangular Pyramids.
Surface Area of a Rectangular Pyramid:
\qquad
4 lateral Faces (Trianstee) I Base (Rectangle)

Formula for Surface Area of a Rectangular Pyramid

$$
\begin{aligned}
& \text { de } 5 . A=4(\text { Triangle })+\text { Base }_{\text {moa }}^{\text {mean }} \\
& S . A=\underbrace{4\left(\frac{1}{2} b h\right)}_{\text {Thiansle }}+\underbrace{}_{\text {Base }}
\end{aligned}
$$

> ex)

$$
\begin{aligned}
& S . A=4\left(\frac{1}{2} b h\right)+b h \\
& S . A=4\left(\frac{1}{2}(9) 10\right)+10 * 10 \\
& S . A .=180+100 \\
& S . A .=280 \mathrm{~cm}^{2}
\end{aligned}
$$

ex) Rectangular Pyramid:
length $=3$ in, width $=3$ in, slant height $=15$ in

$$
\begin{aligned}
& \text { S. } A=4\left(\frac{1}{2} b h\right)+b h \quad \text {. } A=99 i^{2} \\
& \text { S. } A=4=90+9 \\
& \text { S. } A=9.15)+3 \cdot 3
\end{aligned} \quad S . A
$$

3-Triangle
6-hexagon
9-nonason
4-Quadrilateral
7-heptason
10 -decagon
5. Pentagon

8-octogon
Chapter 12 Supplemental Lesson 2
Cross Sections of Figures
Cross Section: is the shape that occurs
When a plane intersects or slices a 3D Figure

Chapter 12 Supplemental Lesson
Cross Sections of Figures (continued)

Cross Section	slice	Drawing/Description
vertical	\square	\square Rectangle
horizontal		0
circle		
angled		oval (ellipse)

Describe the shape resulting from each cross section.

a)
shape of cross section:*Rectangle* H-ogram
c) chape of cross section: Square shape of cross section: Triangle
shape of cross section: Pentagon

