\qquad Pd \qquad

Chapter 1.1 Bringing It All Together

(Powers \& Exponents, Squares and Square Roots, Order of Operations)

Vocabulary Check

Define the following vocabulary words:

1) Evaluate: \qquad
2) Exponent: \qquad
State whether the statement is true or false.
If false, replace the underlined word or number to make a true sentence.
3) Two or more numbers that are multiplied together are called powers. \qquad
4) The product of a number and itself is the square root of the number. \qquad
5) Mathematicians agreed on an order of operations so that numerical expressions would have only one value. \qquad

1-1 A Plan for Problem Solving (pp. 25-29)

Underline the correct term to complete each sentence.
6) The (Plan, Solve) step is the step of the four-step plan in which you decide which strategy you will use to solve the problem.
7) According to the four-step plan, if your answer is not correct, you should (estimate the answer, make a new plan and start again).
8) Once you solve a problem, make sure your solution contains any appropriate (strategies, units or labels).

Use the four-step plan to solve each problem.
9) When Tamik calls home from college, she talks ten minutes per call for 3 calls each week. How many minutes does she use in a 15 -week semester?
10) Alan was paid $\$ 9$ per hour and earned $\$ 128.25$. How many hours did he work?

Name \qquad Date \qquad Pd

1-3 Squares and Square Roots (pp. 34-37)
Find the square of each number.
11) 4 \qquad
13) 16 \qquad
Find each square root.
15) $\sqrt{81}$
17) $\sqrt{121}$
19) The area of a certain kind of ceramic tile is 25 square inches. What is the length of one side? \qquad
1-4 Order of Operations (pp. 38-41)
Evaluate each expression. Show your work ©
20) $24-8+3^{2}$
21) $9+18 \div 6$
22) $9+3(7-5)^{3}$
23) $15+9 \div 3-7$
24) $48 \div 6+2 \times 5$
25) $8+2(9-5)-(2 \times 3)$

Name Date Pd
26) $2^{3}-6 \div 3+3^{2}$
27) $2(7-3) \div 2^{2}$
28) $(2+10) \div 4+2^{2}$
29) $24-8+4^{2} \div 2^{3}$
30) $22+3(8-2)^{3}+12 \div 4$
31) $(4+3)^{2} \div(5+2)+5^{2}$
32) $5 \cdot 3^{2}-7+4$
33) $10^{2} \div 10 \times 5+1^{3}-4^{2}$
34) $25-\left(3^{2}+2 \times 5\right)$
35) $3+\left(24 \div 2^{3} \cdot 7\right)-2^{2} \cdot 5$
\qquad Date \qquad Pd \qquad

Chapter 1.1 Answer Key B.I.T

(Powers \& Exponents, Squares and Square Roots, Order of Operations)

Vocabulary Check

Define the following vocabulary words:

1) Evaluate: To find the value / to solve / work it out
2) Exponent: Tells how many times the base is used as a factor

State whether the statement is true or false.
If false, replace the underlined word or number to make a true sentence.
3) Two or more numbers that are multiplied together are called powers.
false: factors
4) The product of a number and itself is the square root of the number.
false: square
5) Mathematicians agreed on an order of operations so that numerical expressions would have only one value. true

1-1 A Plan for Problem Solving (pp. 25-29)

Underline the correct term to complete each sentence.
6) The (Plan, Solve) step is the step of the four-step plan in which your decide which strategy you will use to solve the problem.
7) According to the four-step plan, if your answer is not correct, you should (estimate the answer, make a new plan and start again).
8) Once you solve a problem, make sure your solution contains any appropriate (strategies, units or labels).

Use the four-step plan to solve each problem.
9) When Tamik calls home from college, she talks ten minutes per call for 3 calls each week. How many minutes does she use in a 15 -week semester? 450 min
10) Alan was pgid $\$ 9$ per hour and earned $\$ 128.25$. How many hours did he work?

Name \qquad Date \qquad Pd \qquad

1-3 Squares and Square Roots (pp. 34-37)

Find the square of each number.
11) $4=16$
12) $13=169$
13) $16=256$
14) $28=784$

Find each square root.
15) $\sqrt{81}=9$
16) $\sqrt{324}=18$
17) $\sqrt{121}=11$
18) $\sqrt{484}=22$
19) The area of a certain kind of ceramic tile is 25 square inches. What is the length of one side? $=5$ in

1-4 Order of Operations (pp. 38-41)

Evaluate each expression. Show your work ©
20) $24-8+3^{2}$
24-8+9
$16+9$
21) $9+18 \div 6$
$9+3$
12
25
22) $9+3(7-5)^{3}$
$9+3(2)^{3}$
$9+3$ (8)
23) $15+9 \div 3-7$ $15+3-7$
18-7
$9+24$
11
33
24) $48 \div 6+2 \times 5$
$8+2 \times 5$
$8+10$
18
25) $8+2(9-5)-(2 \times 3)$
$8+2(4)-(2 \times 3)$
$8+2(4)-6$
$8+8-6$
16-6
10

Name Date

$$
\text { 26) } \begin{aligned}
& 2^{3}-6 \div 3+3^{2} \\
& 8-6 \div 3+3^{2} \\
& 8-6 \div 3+9 \\
& 8-2+9 \\
& 6+9
\end{aligned}
$$

15
28)
$(2+10) \div 4+2^{2}$
$12 \div 4+2^{2}$
$12 \div 4+4$
$3+4$
7

$$
\text { 30) } \begin{aligned}
& 22+3(8-2)^{3}+12 \div 4 \\
& 22+3(6)^{3}+12 \div 4 \\
& 22+3(216)+12 \div 4 \\
& 22+648+12 \div 4 \\
& 22+648+3 \\
& 670+3
\end{aligned}
$$

$$
673
$$

32) $5 \cdot 3^{2}-7+4$
$5 \cdot 9-7+4$
45-7+4
$38+4$
42

$$
\begin{aligned}
& \text { 29) } \\
& 24-8+4^{2} \div 2^{3} \\
& 24-8+16 \div 2^{3} \\
& 24-8+16 \div 8 \\
& 24-8+2 \\
& 16+2 \\
& 18 \\
& \text { 31) }(4+3)^{2} \div(5+2)+5^{2} \\
& 7^{2} \div(5+2)+5^{2} \\
& 7^{2} \div 7+5^{2} \\
& 49 \div 7+5^{2} \\
& 49 \div 7+25 \\
& 7+25 \\
& 32 \\
& 10 \\
& 10 \\
& 100 \div 10 \times 5+1^{3}-4^{2} \\
& 100 \div 10 \times 5+1-4^{2} \\
& 100 \div 10 \times 5+1-16 \\
& 10 \times 5+1-16 \\
& 50+1-16 \\
& 51-16
\end{aligned}
$$

35

35) $3+\left(24 \div 2^{3} \cdot 7\right)-2^{2} \cdot 5$
$3+(24 \div 8 \cdot 7)-2^{2} \cdot 5$
$3+(3 \cdot 7)-2^{2} \cdot 5$
$3+21-2^{2} \cdot 5$
$3+21-4 \cdot 5$
3+21-20
24-20
36) $25-\left(3^{2}+2 \times 5\right)$
$25-(9+2 \times 5)$
$25-(9+10)$
25-19
6
