Lesson 1-1
Order of Operations (p 5-7)
The 4 Basic Operations of Math:

1) Add
2) Subtract
3) Multiply

* Mathematicians agreed on an ORDER for the operations so that every problem has only one true answer.
$P \rightarrow$ Parantheses ($\quad \begin{aligned} & \text { There has to be } \\ & \text { an operation INSIDE }\end{aligned}$
$E \rightarrow$ Exponents $3^{(4)}$ - The exponent tells us how many times to multiply the base number by itself
$3 \times 3 \times 3 \times 3$
Mor $D \rightarrow$ Multiply or Divide
Do whichever comes first
When reading the problem
from left to night

A or $S \rightarrow$ Add or Subtract ex $2: \frac{(20-10+4}{10+4}$
14
ex 3:

$$
\begin{gathered}
\frac{32 \div 4}{8}+3 \times 10 \\
8+3 \times 10) \\
38
\end{gathered}
$$

ex4:

$$
\begin{gathered}
\left(\frac{24+8)}{32} \div 4+4\right. \\
\frac{4+4}{}+4 \\
12
\end{gathered}
$$

ex5:

$$
\begin{gathered}
: \begin{array}{c}
27 \div 3 \times 2+4^{2} \\
27-3) \times 2 \\
\times 2+16 \\
18 \\
18 \\
+16
\end{array} \\
34 \\
\frac{25}{5}+7(9-1) \\
(25)+7(8) \\
32+7(8) \\
32+56 \\
88
\end{gathered}
$$

$$
e \times 6: 2^{5}+7(9-1
$$

ex7:

$$
\begin{gathered}
(4+2) \cdot(7+4) \\
-6):(7+4) \\
66 \\
66
\end{gathered}
$$

Lesson 1-1
29/5/11 More Order of Operations (p5-7)
"Don't forget:" A fraction bar
IS THE SAME AS
A division bar

$$
\begin{aligned}
& e x: \frac{6(3)}{2} \\
& \frac{189}{21} \\
& \frac{24}{2(4)} \\
& \begin{array}{l}
2(4) \\
\frac{24}{8}
\end{array} \\
& 3
\end{aligned}
$$ ex: $\frac{24}{2(5-1)}$

*Simplify
 ${ }_{0}$
(through order of operations) the numerator it eenanimatr dividing.
ex: $\frac{36}{13-9}$
ex: $\frac{5(4)}{6 \cdot 2 \div 6}$
ex: $\frac{3^{3}}{3}(6)$
$\frac{36}{4}$
$\frac{20}{12 \div 6}$
$\frac{27}{3}(6)$
$9(6)$
54

Lesson 1-2

use a variable
ex 1: A number c plus eight * write it

$$
\begin{aligned}
& \text { mber C) plus) eight * write it } \\
& \qquad C+8 \text { how you read } \\
& { }_{l}+8 \text { it }
\end{aligned}
$$

ex 2: A number U multiplied by eleven

$$
{ }^{4} U \times 11
$$

Xl * no times sign needed with this variable
(IIU) * put the \# first
ex: (Ten) More than a number b

$$
b+10
$$ called flipphoses so flip the order

ex 4: The remainder when five, is subtracted from (six) fines a number a

6

$$
6 a-5
$$

Lesson $1-2(p 11-15)$
qua/\| Evaluating Algebraic Expressions
Algebraic Expression: an experssion with Evaluate: solve (work it out)

Evaluate each expression if:

$$
a=3 \quad b=6 \quad c=5 \quad d=9
$$

$$
\text { ex 1: } 10(6 c-3 d)
$$

$$
10(65-39)
$$

$$
10(30-27)
$$

(1) Substitute for

$$
10(3)
$$

(2) Solve (shaw turnedeses)

$$
30^{\prime \prime}
$$

using order of

$$
\operatorname{ex2} 2 \cdot 4[(d-a)+c]
$$

operations

$$
4[(9-3)+5]
$$

$4[6+5]$
4 [11] 44

Date:

\qquad

Lesson 1-3 (pg 18-23) Properties

Properties: that allow us to perform \qquad with numbers
Property Key Word Example Abbrev.
$1+2=$ $+1$
$1 \times 2=2 \times$ \qquad

$(1+2)+3=1+(2+$ \qquad $($ _ — $)$

$(1 \times 2) \times 3=1 \times(\ldots \times 3)$
——
$5+0=$ \qquad

Properties: "rules" that allow us to perform operations with numbers

A

$(1+2)+3=1+(2+\underline{3})$
$(1 \times 2) \times 3=1 \times(\underline{2} \times 3)$
$(c+u)+p=c+(u+p)$

Same
$5+$ 먀 5
$5 \times 1=5$

$$
\begin{aligned}
& m+0=m \\
& m \times 1=m
\end{aligned}
$$

