Name \qquad Date \qquad Pd \qquad

Chapter 3 (Operations with Rational Numbers) Bringing It All Together \#1

Vocabulary Check

State whether the statement is true or false.
If false, replace the underlined word or number to make a true sentence.

1) Numbers that can be written as fractions are called reciprocals.
2) The decimal 4.7 is a terminating decimal.
3) The fractions $\frac{4}{6}$ and $\frac{1}{3}$ are like fractions.
4) To add unlike fractions, rename the fractions using the GCF.
5) A mixed number is another name for the multiplicative inverse.
6) The product of a number and its multiplicative inverse is 1 .
7) Like fractions are fractions that have the same numerator.
8) Repeating decimals use bar notation to show which digits terminate.
9) You need a common denominator to divide fractions.
10) Decimals that repeat or terminate are rational numbers.

3-1 Writing Fractions as Decimals (pp. 121-127)

Write each fraction or mixed number as a decimal.
Use bar notation to show a repeating decimal.
11) $\frac{3}{10}$
——
12) $\frac{2}{5}$
-
13) $-\frac{5}{6}$
14) $-7 \frac{4}{9}$ \qquad 15) $\frac{5}{8}$ \qquad 16) $1 \frac{4}{15}$

Replace each O with <, >, or = to make a true sentence.
\qquad 17) $2 \frac{1}{2} \bigcirc 2 \frac{5}{12}$
18) $\frac{5}{8} \bigcirc 0.625$ \qquad 19) $10.74 \bigcirc 10 \frac{7}{10}$
20)
$4 . \overline{37} \bigcirc 4 \frac{19}{50}$ \qquad 21) $-2.54 \bigcirc 2 \frac{27}{50}$ \qquad 22) $-\frac{4}{5} \bigcirc \frac{1}{7}$

Name \qquad Date \qquad Pd \qquad

3-2 Rational Numbers (pp. 128-133)

Write each decimal as a fraction or mixed number in simplest form.
\qquad 23) 2.08 \qquad 24) -0.45
\qquad 26) -0.56

$$
\text { 27) } 0 . \overline{1}
$$

29) $0 . \overline{5}$ \qquad 30) $10 . \overline{27}$
30) $1 . \overline{6}$

Identify all sets to which each number belongs.
\qquad

$$
\text { _32) }-4
$$

\qquad 33) $3 \frac{1}{3}$
34) $1.151551555 \ldots$
35) $-0 . \overline{67}$
\qquad

$$
\text { 28) }-2 . \overline{03}
$$

\qquad
\qquad

3-6 Adding and Subtracting Unlike Fractions (pp. 153-158)

Find each sum or difference. Write in simplest form.
\qquad 36) $\frac{2}{5}+\frac{1}{15}$
_37) $-3 \frac{5}{6}-2 \frac{1}{2}$
\qquad 38) $\frac{4}{7}+-1 \frac{1}{3}$
_39) $\frac{3}{10}--\frac{1}{8}$
\qquad 40) $25 \frac{1}{3}-14 \frac{2}{5}$
$\underline{ }$
41) $7 \frac{3}{4}+1 \frac{3}{8}$
42) $-\frac{5}{9}-3 \frac{2}{3}$
_43) $-4 \frac{1}{6}+\frac{3}{4}$
44) Monica needs $2 \frac{3}{4}$ cups of flour for a batch of cookies and $3 \frac{1}{3}$ cups of flour for a dozen muffins. How many cups of flour does Monica need altogether?
45) Dane and his family drove 357.9 miles in one day. If their trip is a total of $524 \frac{3}{4}$ miles, how much farther do they need to drive?

Name \qquad Date \qquad Pd \qquad

3-3 Multiplying Rational Numbers (pp. 134-139)

Find each product. Write in simplest form.
46) $\frac{1}{5} \cdot \frac{3}{4}$
-
47) $-\frac{3}{7} \cdot \frac{4}{9}$
_48) $-\frac{2}{53} \cdot-5$ __ 49) $-3 \frac{1}{2} \cdot-5 \frac{1}{5}$
50) Mireille has a piece of ribbon that is 10 inches long. Abi's ribbon is $\frac{5}{8}$ as long. How long is Abi's ribbon?
_51) A liter of water weighs approximately $2 \frac{1}{5}$ pounds. While backpacking, Enrique wants to carry $3 \frac{1}{2}$ liters of water with him. Find the weight of the water that Enrique is taking with him.

3-4 Dividing Rational Numbers (pp. 141-146)

Find the multiplicative inverse of each number.
52) -16
53) $\frac{7}{9}$
54) $3 \frac{4}{5}$

55) $-4 \frac{1}{3}$

Find each quotient. Write in simplest form.
\qquad 56) $\frac{7}{9} \div-\frac{4}{15}$ \qquad 57) $-2 \frac{2}{3} \div 2 \frac{2}{7}$
_59) $3 \frac{1}{9} \div-1 \frac{1}{6}$
58) $\frac{3}{5} \div \frac{9}{10}$
\qquad
60) Pilar drinks $1 \frac{3}{4}$ glasses of milk each day. At this rate, how many days will it take her to drink a total of 14 glasses?

Name Date \qquad Pd \qquad

Answer Key Chapter 3 Bringing It All Together \#1

Vocabulary Check

State whether the statement is true or false.
If false, replace the underlined word or number to make a true sentence.
false; rational 1) Numbers that can be written as fractions are called reciprocals. true \qquad 2) The decimal 4.7 is a terminating decimal.
false: unlike 3) The fractions $\frac{4}{6}$ and $\frac{1}{3}$ are like fractions.
false: LCD or LCM 4) To add unlike fractions, rename the fractions using the GCF.
false; reciprocal5) A mixed number is another name for the multiplicative inverse. true
6) The product of a number and its multiplicative inverse is 1 .
false: denominator 7) Like fractions are fractions that have the same numerator.
false; repeat 8) Repeating decimals use bar notation to show which digits terminate.
false; add or subtract 9) You need a common denominator to divide fractions.
true
10) Decimals that repeat or terminate are rational numbers.

3-1 Writing Fractions as Decimals (pp. 121-127)

Write each fraction or mixed number as a decimal.
Use bar notation to show a repeating decimal.
0.3
11) $\frac{3}{10}$
0.4
12) $\frac{2}{5}$
$-0.8 \overline{3}$
13) $-\frac{5}{6}$
$-7 . \overline{4}$
14) $-7 \frac{4}{9}$
$\underline{0.625}$
15) $\frac{5}{8}$
$1.2 \overline{6}$
16) $1 \frac{4}{15}$

Replace each O with $<,>$, or $=$ to make a true sentence.
\geq
17) $2 \frac{1}{2} \bigcirc 2 \frac{5}{12} \quad=$
18) $\frac{5}{8} \bigcirc 0.625$
\geq
19) $10.74 \bigcirc 10 \frac{7}{10}$
\leq
20) $4 . \overline{37} \bigcirc 4 \frac{19}{50} \leq$
21) $-2.54 \bigcirc 2 \frac{27}{50}$ \qquad 22) $-\frac{4}{5} \bigcirc \frac{1}{7}$

Name \qquad Date \qquad Pd \qquad

3-2 Rational Numbers (pp. 128-133)

Write each decimal as a fraction or mixed number in simplest form.
$2 \frac{2}{25}$
23) 2.08
$-\frac{9}{20}$
24) -0.45
$\frac{7}{8}$
25) 0.875
$-\frac{14}{25}$
26) $-0.56 \quad \frac{1}{9}$
27)
$0 . \overline{1} \quad-2 \frac{1}{33}$
28) $-2 . \overline{03}$
$\begin{array}{llll}\frac{5}{9} & \text { 29) } & 0 . \overline{5} & 10 \frac{3}{11}\end{array}$
30) $10 . \overline{27}$
$1 \frac{2}{3}$
31) $1 . \overline{6}$

Identify all sets to which each number belongs.
integer, rational
32) -4
rational
33) $3 \frac{1}{3}$
irrational
34) $1.151551555 \ldots$
rational
35) $-0 . \overline{67}$

3-6 Adding and Subtracting Unlike Fractions (pp. 153-158)

Find each sum or difference. Write in simplest form.
$\frac{7}{15}$
36) $\frac{2}{5}+\frac{1}{15}$
$\left.-6 \frac{1}{3} 37\right)-3 \frac{5}{6}-2 \frac{1}{2}$
$-\frac{16}{21}$
38) $\frac{4}{7}+-1 \frac{1}{3}$
$\frac{17}{40}$ 39) $\frac{3}{10}--\frac{1}{8}$
$10 \frac{14}{15}$
40) $25 \frac{1}{3}-14 \frac{2}{5}$
$\left.9 \frac{1}{8} 41\right) 7 \frac{3}{4}+1 \frac{3}{8}$
$-4 \frac{2}{9}$
42) $-\frac{5}{9}-3 \frac{2}{3}$
$\left.-3 \frac{5}{12} 43\right)-4 \frac{1}{6}+\frac{3}{4}$
$6 \frac{1}{12}$ c 44) Monica needs $2 \frac{3}{4}$ cups of flour for a batch of cookies and $3 \frac{1}{3}$ cups of flour for a dozen muffins. How many cups of flour does Monica need altogether?
$166 \frac{17}{20}$ miles or 166.85 miles 45) Dane and his family drove 357.9 miles in one day. If their trip is a total of $524 \frac{3}{4}$ miles, how much farther do they need to drive?

Name \qquad Date \qquad Pd \qquad

3-3 Multiplying Rational Numbers (pp. 134-139)

Find each product. Write in simplest form.
$\frac{3}{20}$
46) $\frac{1}{5} \cdot \frac{3}{4}$
$-\frac{4}{21}$
47) $-\frac{3}{7} \cdot \frac{4}{9}$
$\frac{10}{53}$
48) $-\frac{2}{53} \cdot-5$
$18 \frac{1}{5}$
49) $-3 \frac{1}{2} \cdot-5 \frac{1}{5}$
$6 \frac{1}{4}$ in 50) Mireille has a piece of ribbon that is 10 inches long. Abi's ribbon is $\frac{5}{8}$ as long. How long is Abi's ribbon?
$7 \frac{7}{10} \mathrm{lb} 51$) A liter of water weighs approximately $2 \frac{1}{5}$ pounds. While backpacking,
Enrique wants to carry $3 \frac{1}{2}$ liters of water with him. Find the weight of the water that Enrique is taking with him.

3-4 Dividing Rational Numbers (pp. 141-146)

Find the multiplicative inverse of each number.
$-\frac{1}{16}$
52) -16
$\frac{9}{7}$
53) $\frac{7}{9}$
$\frac{5}{19}$
54) $3 \frac{4}{5}$
$-\frac{3}{13}$
55) $-4 \frac{1}{3}$

Find each quotient. Write in simplest form.
$-2 \frac{11}{12}$
56) $\frac{7}{9} \div-\frac{4}{15}$
$-1 \frac{1}{6}$
57) $-2 \frac{2}{3} \div 2 \frac{2}{7}$
$\frac{2}{3}$
58) $\frac{3}{5} \div \frac{9}{10}$
$-2 \frac{2}{3}$
59) $3 \frac{1}{9} \div-1 \frac{1}{6}$

8 days 60) Pilar drinks $1 \frac{3}{4}$ glasses of milk each day. At this rate, how many days will it take her to drink a total of 14 glasses?

