Chapter 8 (part 2) Bringing It All Together Linear Equations

Graph the equation by plotting the ordered pairs. (4 points)

1) $y=3 x+2$
2) $2 y=-3 x-2$

Find the slope of the line that passes through the pair of points. (1 point)
3) $A(12,5) \quad B(-4,1)$
4) $R(12,-2) \quad S(6,2)$

Using the given graph, find the slope of the line. (1 point)
5)

6)

State the slope and the y-intercept of the equation. (2 points)
7) $-5 x+6 y=-48$ \qquad ; \qquad

Name

 Date Pd \qquadGraph using the slope and y-intercept. (2 points)
8) $y=\frac{1}{4} x-4$
9) $y=-2 x+3$
10) $-3 x+4 y=-4$

Give the slope of the line by using the
data in the table. (1 point)
11a)

Graph the points on the represented coordinate plane. (1 point)
(Connect the points to form a line.)

\boldsymbol{x}	\boldsymbol{y}
-1	-6
0	-8
1	-10
2	-12

11c) What does the point $(0,-8)$ represent? \qquad (1 point)

Write an equation of the line in point-slope form that passes through each set of points: (2 points)
12) $(9,-1)$ and $(6,-2)$ \qquad
13) $(-5,10)$ and $(3,-6)$
14) $(5,0)$ and $(2,-3)$ \qquad

Name \qquad Date \qquad Pd \qquad
Write an equation for the line in slope-intercept form when:
15) the slope is $-\frac{1}{4}$ and the y-intercept is 2 \qquad (1 point)

Write an equation for each line in slope-intercept form: (1 point)
16) \qquad 17) \qquad

Solve each system of equations by substitution: (2 points)
18)

19) \qquad
$4 x-y=16$
$y=2 x$
20)

$$
\begin{gathered}
-3 y-3 x=-9 \\
x+y=3
\end{gathered}
$$

Solve each system of equations by elimination: (2 points)
21)
$-6 x+y=12$
$-16 x-y=-10$
22) \qquad
$-x+2 y=7$
$5 x-3 y=-21$
23)

$$
\begin{gathered}
3 x-2 y=8 \\
-6 x+4 y=9
\end{gathered}
$$

\qquad
\qquad Pd \qquad

For 24-26, the graph of a linear system is given. State the solution of the system. State whether the system is inconsistent, consistent and dependent, or consistent and independent.
24)

25)

26)

Graph the system of equations. (2 points)
State whether the system is parallel, intersecting, or coincides. (1 point) Give the solution for the system. (1 point)
27)
$y=2 x+3 ; \frac{1}{2} x=y$

28)
$y=x+3 ; y=x-3$

Set up and solve the following systems of equations. Choose your choice of method 29) In one day, a movie theater collected $\$ 4600$ from 800 people. The price of admission is $\$ 7$ for an adult and $\$ 5$ for a child. How many adults and how many children were admitted to the movie theater that day?
30) An adult ticket for a school play costs $\$ 3$ more than a children's ticket. When 552 adult and 397 children's tickets were sold, the total revenue was $\$ 8,299$. Find the cost of an adult pass.

Chapter 8 (part 2) BIT Answer Key

Graph the equation by plotting the ordered pairs. (4 points)

1) $y=3 x+2$

2) $2 y=-3 x-2$
$\left\{y=-\frac{3}{2} x-1\right.$

Find the slope of the line that passes through the pair of points. (1 point)
3) $A(12,5) \quad B(-4,1)$

$$
m=\frac{1}{4}
$$

4) $R(12,-2) \quad S(6,2)$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
m=-\frac{2}{3}
$$

Using the given graph, find the slope of the line. (1 point)
5)

$m=-4$
6)

$$
m=\frac{2}{3}
$$

State the slope and the y-intercept of the equation. (2 points)
7) $-5 x+6 y=-48 \quad m=\frac{5}{6} \quad b=-8$

$$
\frac{+5 x \quad+5 x}{\frac{+5 y}{6}=\frac{5 x}{6}-\frac{48}{6}} \quad \square y=\frac{5}{6} x-8
$$

Name Date \qquad
Graph using the slope and y-intercept. (2 points)
8) $y=\frac{1}{4} x-4$

9) $y=-2 x+3$

10) $-3 x+4 y=-4$

Give the slope of the line by using the data in the table. (1 point)

11a)
$m=-2$

Graph the points on the represented coordinate plane. (1 point)
(Connect the points to form a line.)

11c) What does the point $(0,-8)$ represent? y-intercept (1 point)
Write an equation of the line in point-slope form that passes through each set of points: (2 points)
12) $(9,-1)$ and $(6,-2) \quad y+1=\frac{1}{3}(x-9)$ or $y+2=\frac{1}{3}(x-6)$
13) $(-5,10)$ and $(3,-6) y-10=-2(x+5)$ or $y+6=-2(x-3)$
14) $(5,0)$ and $(2,-3) y=x-5$ or $y+3=x-2$

Name Date \qquad
Write an equation for the line in slope-intercept form when: (1 point)
15) the slope is $-\frac{1}{4}$ and the y-intercept is $2 y=-\frac{1}{4} x+2$

Write an equation for each line in slope-intercept form: (1 point)
16) $y=\frac{1}{2} x-4$

17) $y=-3 x+2$

Solve each system of equations by substitution: (2 points)
18) $(7,-1)$
$x-y=8$
$y=-1$
19) $(8,16)$
$4 x-y=16$
$y=2 x$
20) Infinitely many Solutions

$$
\begin{gathered}
-3 y-3 x=-9 \\
x+y=3
\end{gathered}
$$

Solve each system of equations by elimination: (2 points)

$$
\begin{aligned}
& \text { 21) }(-1,6) \\
& -6 x+y=12 \\
& -16 x-y=-10
\end{aligned}
$$

22) $(-3,2)$
$-x+2 y=7$
$5 x-3 y=-21$
23) No Solution

$$
\begin{gathered}
3 x-2 y=8 \\
-6 x+4 y=9
\end{gathered}
$$

Name \qquad Date \qquad Pd \qquad
24)

Infinitely many Solutions
Consistent and Dependent
25)

26)

No Solutions
Inconsistent

Graph the system of equations. (2 points)
State whether the system is parallel, intersecting, or coincides. (1 point) Give the solution for the system. (1 point)
20) intersecting : $(-2,-1)$

$$
y=2 x+3 ; \frac{1}{2} x=y
$$

21) parallel: no solution

$$
y=x+3 ; y=x-3
$$

Set up and solve the following systems of equations. Choose your choice of method 29) In one day, a movie theater collected $\$ 4600$ from 800 people. The price of admission is $\$ 7$ for an adult and $\$ 5$ for a child. How many adults and how many children were admitted to the movie theater that day?

$$
\begin{gathered}
x+y=800 \\
7 x+5 y=4,600 \\
300 \text { adult and } 500 \text { children }
\end{gathered}
$$

30) An adult ticket for a school play costs $\$ 3$ more than a children's ticket. When 552
adult and 397 children's tickets were sold, the total revenue was $\$ 8,299$. Find the cost of an adult pass.

$$
x=y+3
$$

$552 x+397 y=8,299$

\$10 adult tickets and \$7 childrens tickets

FINALLY DONE

